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ABSTRACT

This paper presents the results of an investigation of the effects of stress
interaction on fatigue life of aircraft structural materials subjected to randomized
load spectra. All three materials: 2024 and 7075 aluminum and SAE 4340 steel ex-
hibit fatigue lives shorter than those predicted on the basis of the linear (Miner)
damage rule. A quasi-linear rule is proposed with a variable, spectrum dependent,
endurance limit producing safe life estimates; the dependence of the endurance limit
on the stress spectrum and its resulting design inadequacy is shown,

Tests were performed on high speed, programmed, rotating bending fatigue
machines of special design.
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s O0si .
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Nﬁ. N, Refer to fatigue lives under randomized (spectrum) loading directly
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Several investigations were conducted in recent years to obtain a reliable
method for the interpretation of the fatigue life of structures subjected to
spectrum type loading. While the general problem of correlating test results
obtained on simple laboratory specimens under simulated loading conditions with
the behavior of complex structures is far from being solved, the partial problem
of prediction of fatigue life of specimens is now better understood.

It has been shown prev1ously that "life reducing" interaction between
frequent low and infrequent hlgh stress amplitudes based on the concept of slip
accumulated into striations 2 leads to a quasi-linear damage rule and conservat-
ive estimates of fatigue lives 3. For this purpose "fictitious" interaction
S-Vy diagrams were constructed from which the shortened fatigue lives were ob-
tained.

The previous interpretation of the random fatigue tests was based on the
following simplifications: the endurance limit of the S-V{ relation was assumed
to be too low to be significant; a high stress level 5 above which fatigue is
replaced by alternating plasticity was chosen arbitrarily, and only simple ex-
ponential stress spectra were examined.

The purpose of the present paper is to generalize the previous approach using
the full interaction damage rule by the consideration of a variable endurance limit
in conjunction with a constant-slope S-V; relation, the elimination of S, and
the inclusion of generalized (skewed) exponential stress spectra and additional
test data.

Three airecraft structural materials, 2024 and 7075 aluminum and SAE 4340
steel, were investigated using specially designed 4 rotating bending fatigue mach=-
ines on which up to seven load levels, controlled by a programmed tape, may be
applied to the specimen. The specimens used were 5/16 in. dia. bars with a central
section 1 in. long that is gradually reduced to 3/16 in. dia. Table 1 lists the
physical properties of the three materials.

2. S C ve D

The cumulative damage theory presented earlier 1 assumes that the interaction
between infrequent high stress amplitudes and frequent low stress amplitudes of a
random spectrum produces initiation or acceleration of damage at the low stress
amplitudes disproportionately higher than that predicted on the basis of the con-
stant amplitude S-V, relation. Though observations have shown that the initial
application of high stress amplitudes may produce an increased fatigue life at the
subsequent low stress amplitudes due to strain hardening of the material, such re-
sults can not be expected in random tests of smooth unnotched specimens essentially
free of residual stresses; consequently, only life reducing interaction will be
considered. Moreover, little stress interaction should be expected in tests in which

Manuscript released by the author August 31, 1960 for publication as a WADD
Technical Report.
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the proportion of high stress levels is large enough to produce a significant
amount of damage on its own so that the test results are governed, essentially,
by the high stress levels alone.

It is reasonable to assume that the conventional endurance limit of a material
will not remain unaffected if the applied stress spectrum contains stress levels
both below and above this limit, because even a non-propagating crack, that would

remain static under the application of very low loads, may become active when a few
intermittent high loads are applied.

The complex effects of "life reducing" interaction may therefore be represent-
ed most effectively by interaction factors, w _ > 1 that will reduce the character-
istic constant amplitude fatigue life at a pargicular stress level from Vg to
Vi = Vs/cns. or coY > 1 that will reduce the stress level at a particular fatigue
life from S to S' = S/(ﬂv, both interaction factors being functions of the stress
spectrum and related to each other. With their aid an interaction S-V; diagram
differing in slope and endurance limit from the real S-Vg diagram may be construct-
ed (Fig. 1) and expressed as simple power function of the form

Vg -5,V

A = 2.1
2 = (e

l[_ls. = (E _s')p 2-2
Vi a-s;

where V. and V} are, respectively, the characteristic values (at_ L =1/e)

of the conventional constant amplitude fatigue life and the interaction life, V,
is the conventional constant amplitude fatigue life at the maximum stress level
ratio s, of the spectrum, s the test stress amplitude ratio, se and sl the
conventional and the reduced endurance limit ratios, v and p the slopes of

the two lines, where V > p; the stress ratio is defined as the ratio of the
test stress to the ultimate tensile strength in tension s = S/ g..» The two equat~-
jons related through the interaction factors may be expressed as uVS =w ¢Vy and

s =0 .s' or from Eq. 2.1 and 2.2

-S, YV Sm—S' o]
-, - 2/ b
= e = S 2.4
@ B - -
Y (sm-sg)(:z}_—:e)'v ¥ s! ®s 1/ (s-sy) + sg

For the simplified cases where both Se and sé are assumed to be zero Eq. 2.3
and 2.4 reduce to the form

s . VaP <]
®g = (-Sg) and ©s = oy 2‘5
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For high stress levels, as s approaches S8, both factors approach unity showing
that no interaction occurs at the highest stress level of the spectrum, while for
stresses approaching s,, the interaction factor g Dbecomes very large and o v

approaches ® _ = se/sé.

With the use of the interaction factors the linear damage rule of Palmgren 5
and Miner

VR = 1/2:(pi/VSi) 2-6
may be modified to produce the observed fatigue life
@y
Vﬁ = 1/ (piv‘s_i ) = l/z‘(pi/v'si) 2.7

where Vp and Vp are, respectively, the estimated and observed life under a
randomized spectrum of stress amplitudes and Py is the frequency of occurrence
of the 1ith stress level,

Combining Eqs. 2.2 and 2.7 the modified linear damage rule in terms of stresses

Vi s-s! . p
B = S 2.8
Vi /ZPi(%rsé)

results.

3. load Spectra

The determination of a load spectrum representative of actual service con-
ditions on an aireraft which is to be applied to a tgst specimen has long been a
topic of discussion. It has been shown by Lundberg © that a simple exponential
spectrum will adequately describe gust and maneuver loads on airplane wings, while
a recent paper by Weibull 7 expresses sonic noise spectra in terms of extremal
(Weibull) distributions. Because of its versatility and simplicity the extremal
load distribution was adopted in the present investigation. The frequency distri-
bution has the form

S-S, a

S=5 a -1 "('3"'-'-'32)
Q f )e c” "o

a
p(S) = sc_so ( sc_so ’ 3'1
while the cumulative distribution P(s) = 1-P*(s), where
" S-SO )G
P*(s) = éf p(s) ds = e ¢ % 3.2

represents the frequency or probability of values exceeding s; the return number
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of such values T(s) = P*l . In the above expressions s 1is the non-dimensional
stress-amplitude ratio, ggj the lowest limit of expected stress amplitude ratios,
s. the characteristic stress amplitude ratio similar to (mode) of the spectrum at
Pg(s ) =1/e, and a is a parameter. It should be noted that for a =1 LuEdberg's
simpie exponential distribution, P* = e=h(s=50) results, with slope h = (

on a semi logarithmic plot. For @ = 2, Eq. (3.2) is known as the Rayleigh %e™%
distribution while for @ = 3.57 a good approximation to the normal distribution®
results. Weibull has shown 7 that Eq. 3.2 is applicable to spectra containing a

mean stress as well as to those with zero mean stress, as is the case in the present
investigation. Figure 2 presents some typical stress spectra while Table 2 lists

the relevant parameters and P*(s) of the distributions used in the tests. It is

to be noted that distributions A-C" were designed some time ago on the basis of
available flight data 8 without a theoretical probability density function in mind;
extremal distributions were fitted to the data later and consequently the parameters
listed for these distributions are only approximate.

4, Analysis amage Ac ulatio

The inherent scatter of fatigue test results makes it necessary to associate
both the conventional and the interaction fatigue diagrams Eq. 2.1 and 2.2 as well
as random test results with a particular level of probability of survival. On the
basis of extensive investigations 9 the so called Third Asymptotic distribution of
extreme (smallest) values limited by a minimum life N, has been found to reproduce
fatigue test data fairly well; consequently, the probability of surviving N stress
cycles will in this report be represented by the survivorship function

L(N) = e~ [(N'No)/(V‘NoJ]B 4.1

a distribution identical with the one used to define load spectra in Eq. 3.2; V
the characteristic value at the probability level L(V) = 1/e is eclose to the mode
of the distribution and B 1is a scale parameter. The same expression is valid for
constant amplitude (Ng) and variable amplitude (Ng) tests.

The cumulative damage relation will be developed for the characteristic value
of the observed fatigue life Vﬁ on the basis of the modified linear damage rule
Eqs. 2.7 and 2.8 where the summation is replaced by integration and the frequency
of occurrence of individual stress amplitudes by the continuously varying frequency
distribution function p(s) according to Eq. 3.1l.

s-s. «a

v -8} .y ~z=p)
s fsmp(s)V§/V; a8 = =B fsm( 5 Se)P a S-S, )(a 1)0 Sc=8,
1 Vm

ds =1 4.2
8] 8y=81" 'T¢~8y Bc~%

The limits of integration s, and s_ are the lowest and the highest stress ampli-

tude ratios of the test specirum. Chgnging the variable to (3_5 )a
z = -—:%—
the integral can be simplified ™ 0
Eﬁ 8 ~-s_ P Z 1/ S -g! p
(=) [B[z7% + (252 e dz=1 (4.3)
Vn °m=% 1;1 : sc"so)]
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expanding the integrand into a binomial series with the abbreviation
l/a

-(s - 8,)/ (s, - 8,) = -(z})

Eq. 4.2 can be written in the form
v - -
Vﬁ (::—_:!—)pf::{ zp/a - ol zéz(p'l)] lfa + &(ZE-L]-}[ (Z;Zz(p-z)]lfa —-os } e 2 dg =1l U4.b4

Integrating term by term and noting that fg e"? dz = [( p#1) 1is the incomplete
gamma function with upper limit z:

Vi 8_-8_p - -
+ =P (I &+ -1, G+ 21 - g/, €52+ 0 - Q@SR e] ¢
o) o7/, €20 - T, (RpEem) e} -1 Les

An analogous expression is obtained for the linear accumulation fatigue life Vp

by replacing s& with the conventional endurance limit ratio s, and p withy .
The ratio VL/Vp = 1/@ is the ordinary cumulative cycle ratio and & may be de-
noted as an over all interaction factor, @ > 1, for the spectrum. The above trans-
cendental equation is a function of the parameters p and s} which may be obtained
from experiment. Considerable simplification of Eq. 4.2 can be achieved for simple
exponenﬁial spectra with a =1, (s¢ = 8,) = 1/h, by substituting z = h(s = s!)

in Eq. 4.2

Vh 2 " V'l A
T _&‘;_ _’;"':'Lmzp e~%dz = 1 = TIE .(QE"W[ r'zm( p+l) - r'zl (p+ 1)] 4.6

For stress spectra containing stress amplitudes both above and below the endurance
limit s! sthe lower limit of integration should correspond to s; since stresses
below t.hgs limit do not produce any damage. For this case z; should be replaced
by 2! in Eqs. 4.5 and 4.6. For the simple expgnential distribution of Eq. 4.6
2! = § and hence Eq. 4.6 becomes (Vﬁ/Vm)(e’o/zm ) I";m (p+l) =1

The incomplete gamma function tabulated by Pearson 10 35 plotted in Figure 3.
It is evident from the figure that for values of the upper limit 2z > 6 the in=
complete function approaches the complete gamma function ["(p 41) very rapidly.
In this region it is helpful to consider the complement of the incomplete gamma
function

]'"(p +1) = j;’zp e Zdz = f:zp e Zdz - f:zp e %dz = [( p+l) = My(p+l) L.7

WADD TR 60=752 5



Integrating the first integral of Eq. 4.7 by parts

rlz(p-pl) = e-z i’ .E.(.M__z(i’ -n) 4.8

n=o [ (p-n+l)

is obtained which, for integral values of p , may be written in the form

p
z -2 : (p=n)
(p+l) = e Y bt g P 4,
Gl n=o (P=n)! ’
Substituting Eq. 4.7 and 4.9 for instance into Eq. 4.6 the simplified form
Va z 4
b QL T Y zm(p -n) g%y _ zl(p'n) e"?l] =1 4,10

Vi (25) P n=o (p -n)!
is obtained.
The most damaging stress amplitude sp at the maximum rate of damage will be

determined by differentiation of the damage rate dD/ds = p(s) Vg/ VL with respect
to s setting the derivative equal to zero;

s=S. a
sl
2 1 S=s! P 5=S - -(s=57)
o T S for W G T UL PR 411
ds d.s Vm Sm-se Sc_so Sc_so
from which
Sh=8_ a
D -
(sp=s?)l (a-1) - a (30_8:) 1 4 p(sp=s ) =0 4.12

8, may be found given the relevant parameters. For the exponential distribution
again with @ = 1, h = l/(sc-so); sp = (p /n) + sl

The general S-V' relation, on the basis of which Eq. 4.5 was developed, is
a function of the two parameters p and s' and expresses the damaging effects of
the spectrum. "High level" fatigue with alf stress levels considerably higher than
the endurance limit is characterized by p << v and the endurance limit remains
unaffected while "low level" fatigue with all stress levels near the endurance
limit, by p2 v and s} < Se» if the stress levels are distributed over a wide range
P <V and sé < s_, will result as can be seen on Figure 3. The same relation may
be useful in explafning possible work hardening effects of the high stress levels
(p>v)(sf >s,). It is, however, expedient to keep the first parameter, p |,
constant and vary only the second one the endurance limit, Sge Such a procedure
will permit the use of an integral value of p and will therefore simplify all re-
lationships considerably. Suggestions for a constant p have also been made by
other investigators 11 12 | but the variation of the endurance limit was not ob=-
served until the present time.

WADD TR 60=752 6



5. Experimental Procedure and Results

Variable stress amplitude tests were performed on vertical rotating bending
fatigue machines in which up to seven load levels may be applied at random to the
specimen by the variation of the electric current in a coil moving in a magnetic
field, the sequence of loads being controlled by a tape programming device. A
detailed description of the equipment and its operation may be found in ref. 4.
Three aircraft structural materials, 2024 and 7075 aluminum and SAE 4340 steel
(Table 1) were tested in the form of round specimens of 5/16 in. maximum diameter
and a gradually reduced 1 in. long central section of 3/16 in. minimum diameter
under a great variety of stress spectra, each test series consisting of twenty
specimens to permit statistical analysis of the results. A total of 1500 random
and 500 constant amplitude tests were performed and their results analyzed; only
the characteristic values V§ and Vg respectively are presented here. The
actual test data have been tabulated and published earlier 13, 14, 3

The conventional S-N-L relation at the probability level L(Vg) = 1l/e
evaluated previously without the consideration of an endurance limit has been re-
computed; log(S-S,) was plotted versus log Vg selecting S, by trial and error
in such a way as to produce a straight line. Consequently S, is a mathematical
rather than a physical endurance limit which, however, does not differ significantly
from the conventional endurance limit values listed in standard tables such as
ANC-5., The equations of the (3'30)‘V3 relations for the three materials are as
follows:

2024 Aluminum Vg = 1.07 x 103 x (s -.35)=%.45 5.1
7075 Aluminum Vg = 6.91 x 102 (s _.25)-4.?6 5.2
SAE 4340 Steel Vg = 5.85 x 102 (s -.hé)"3°33 5.3

and are plotted in Figure 5.

The testing machines used in the investigation can only apply discrete stress
levels in random sequence rather than continuous spectra, and consequently the in-
tegration procedure of Eqs. 4.2 to 4.10 must be replaced by summation as in Eq.
2.8 where the frequency of occurrence p; of the individual stress levels is ob-
tained from Eq. 3.2

8 -8 s =g
Sisl -(32'80) = z:isoo * * 4
Py = Js; p(s) ds=e -e = P*(s;) = P*(sy,,) 5.

Since stress amplitudes greater than s_ are not applied the frequency of
occurrence of s, must include those of allnhigher stress levels. Consequently
p. = P*(qn). The cumulative probabilities P*(s) are tabulated in Table 2, while

stress levels used in the tests are shown in Table 3 to 5. The increment be-
tween adjacent stress levels A s = sj,] - s; = constant for a distribution.
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Pairs of p and corresponding s! were computed by trial and error from
Eq. 2.8; a few of the typical combina%ions are shown in Figure 6. For convenience
an integer value of p was finally chosen for each material, sy was computed as
the only parameter of the (S-S;) - V; relations and is presented in Tables 3, 4
and 5. The chosen p values, = 4 = 3 for s ,» provide
the best fit for all tests.

The reduction of the endurance limit in random tests is quite apparent in most
of the results and is most significant in the case of steel, for which such a re-
duction has been shown to exist 1. Though a constant value of p = 4 produces an
apparent increase of the endurance limit in a few isolated cases for 7075 aluminum
(Table 5), this is only indicative of the fact that a somewhat higher value of p
might have been chosen for these tests.

6. Conclusions

The following observations can be made on the basis of the results: (1) for
2024 aluminum and SAE 4340 steel the linear damage rule always overestimates the
fatigue life as can be seen from the values of the sum of cycle ratios 1o < 1,
for 7075 aluminum the linear damage rule provides an overestimate in the majority
of cases but is reliable for tests with predominantly very low stresses; (2) a
constant value of p may be found for each material; this and a variable enduranoce
limit stress will determine the interaction damage (S-Sé) - V§{ diagram, permitting
the use of a quasi-linear damage rule; (3) empirical relationships between s}
and the other relevant variables, namely, h, sy, s, Vg, and Vp» may be determin-
ed at least for 2024 aluminum and SAE 4340 steei; ey give a fairly reliable
estimate of the lowered endurance limit (for constant P ) as demonstrated in
Figures 7 and 8 and Eqs. 5.5 and 5.6.

v
2024 Aluminum sé = 145 log hzsl(vﬂ)lla =18 5.5
m
Yg:1/5 dle i
SAE 4340 Stesl sl = s, - .57 (yF) ) st -.352 5.6

No such a relation was however found for 7075 Aluminum,.

It is apparent that the constant value p with s! = 0 provides a safe
fatigue life for all tests, while a careful choice of tge endurance limit reduced
by about 25% will give conservative estimates in most cases., The constant values
of p are only slightly lower than the conventional slopes y of the
log(S-Se) - log Vg diagrams; as a matter of fact they are the nearest integer
values to v and suggest that similar procedures may be followed for other materials.
The approximate value of the reduced endurance limit may then be obtained from a few
program tests since s} 1is delimited by zero on the one hand and the conventional
endurance limit Sg on the other.

WADD TR 60-752 8
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TABLE 1

PHYSICAL PROPERTIES OF MATERIALS

Ultimate Yield Modulus Slope v Endurance Slope ¢
Tensile  Strength of of Limit of
Strength in Elasticity log( s-ae)— Stress log( S-S;)-
o . ksi Tension : Ratio s '
u oy et Ex10'6 ksi LogV Jline e logvsline
2024
Aluminum 64 53 10 L, 46 .35 4
7075
Aluminum 82 66 10 4,76 .25 4
SAE 4340

WADD TR 60 =752
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TABLE 2

PARAMETERS OF LOAD DISTRIBUTIONS

Dis- Frequencies of Occurrence P*( si) of Stress

tri=- s Se a | Amplitude Ratios Equal to or exceeding s.

but- 0 P*(s;) P*(s,) P*(s;) P*(s,) P*(s.) P*(s,)

; 1 4 2 3 4 5 6

ion

A S1=+24As sl+l.8 As 2.0 | 1.0 .95000 .45000 .10000 .030000 .01000000

B S1=e 2As sl+2. 5As 2.5]1.0 .98000 ,80000 .30000 .050000 .01000000

C sl-.2 As 314-1.3 As 1.0 | 1.0 .50000 .25000 .12000 .050000 .01000000

D Sy S14 .« 6As 1.0 | 1.0 19406 .05302 .01272 .002670 .00066000

Al sl-.BA s sl+l.8 As 2.111.0 .97000 .34500 .04500 .007000 .00200000

B! sl-.ZA s [sy+2.5As 2.6 | 1.0 .98500 .88700 .26200 .012000 .00200000

c? S1=+3As |5+ .7As 1.0 1.0 37500 .12500 .O04200 .012000 .00200000

A" |s1-.1As |s1+2.2 Qs 1.6 | 1.0 .90000 .50000 .22000 .110000 .05000000

B" |sy=.4As |s,42.7 As 1.8 | 1.0 .94000 .76000 .36000 .130000 .05000000

il 1

C" |sy=«1lAs |s)+l.7As 1.0 | 1.0 .60000 ,37000 .23000 ,130000 .05000000

E 5, 5% . 578 As | 1.0 | 1.0 .17800 .03240 .,00576 .001180 00018000

F s, S1#% . 437As | 1.0 | 1.0 .10000 .01000 .00100 .000100 .00001000

G S1 s+ .292As | 1.0 11.0 .03160 .00100 .00003 .000001 .00000003
WADD TR 60 - 752 1 5



TABLE 3 PARAMETERS AND TEST RESULTS FOR 2024 ALUMINUM SPECIMENS

P =4, , v = 4,46, Seg = 35
Test Spec- ILowest Stress No. of Linear Test Endur- Cumulative
Series trum Stress Ratio Levels Life Results; ance Cycle
No. Type Ampli- Incre- in (MINER) VR Fatigue Limit Ratio 1/@
(Table tude ment As Spec- in Life V§ Ratio s!
II) Ratio s, trum n Thousands in e
of Thousands
Cycles of
Cycles

1 A 372 .0970 6 608.0 166.6 .131 274

2 B 372 .0970 6 325.0 109.5 153 <334

) C « 372 .0970 6 611.0 150.5 .014 246

L A «390 +1015 6 405.0 134.1  .172 «332

5 B «390 .1015 6 217.0 74.1 137 <341

6 c «390 .1015 6 408.0 119.6 .053 «293

7 D «390 .1015 6 3,620.0 495.5 .160 137

8 Al «390 .1015 6 790.0 134.8 .102 171

9 B! «390 .1015 6 275.0 103.8 .216 « 377
10 ct «390 .1015 6 1,090.0 203.4  .054 .187
A r § A" .390 .1015 6 163.0 5645 0 « 347
12 B*  ,390 «1015 ) 129.0 45,8 0 «355
13 chr  .390 .1015 6 161.0 62.8 0 «390
14 A 441 .0508 6 1,580.0 306.0 0 «194
15 B Sl .0508 6 866.0 180.0 0 .208
16 c JH41 0508 6 1,870.0 285.0 0 «152
17 D .289 .1015 6 16,950.0 6,523.0 .200 .385
18 cr  .289 «1015 6 489.0 132.7 0 271
19 A +6U5 .1015 6 83.1 49,7 .310 « 598
20 B 645 .1015 6 59.9 37.6 305 .628
21 c 645 .1015 6 103.0 51.4  .169 499
22 E «350 .1000 6 14,120.0 3,760.0 .233 266
23 E 450 .1000 6 2,510.0 479.0 .210 191
24 E «550 .1000 5 492.0 8l.8 .286 166
25 E «650 .1000 4 138.0 53.3 160 . 386
26 F +350 »1000 6 48,120.0 13,308.0 .263 <277
27 F 450 .1000 6 5,931.0 1,420,0 .275 «239
28 F <550 .1000 5 733.0 259.0 .222 «353
29 F .650 »1000 4 174.0 71.3 217 410
30 G 450 .1000 6 15,100.0 4,400.0 .314 «291
31 G «550 .1000 5 996.0 477.0  .310 479
32 G .650 .1000 L 209.0 116.0 .300 «555

WADD TR 60 - 752 2



TABLE 4 PARAMETERS AND TEST RESULTS FOR 7075 ALUMINUM SPECIMENS

P = 4’ Yy = le.?s, Be = .25
Test Spec- Lowest Stress No. of ILinear Test Endur- Cumulative
Series trum Stress Ratio Levels Life Results; ance Cycle
No. Type Ampli- Incre- in (Miner) Vp Fatigue Limit Ratio 1l/o
(Table tude ment As Spec- in Life V! Ratio s|
II) Ratio s, trum n Thousands in R
of Thousands
Cycles of
Cvcles
1 A «360 094 6 196.0 54.5 0 .278
2 B « 360 094 6 110.2 38.5 0 « 349
3 c . 360 094 6 201.4 143.8 24 . 714
b D 360 094 6 1,389.8 600.0 .20 432
5 A? «360 094 6 353.0 201.0 .27 « 569
6 B! «360 094 6 140,3 97.0 32 693
7 c «360 094 6 554.5 230.5 .15 416
8 AN «360 094 6 82.2 33.9 0 412
9 B" «360 094 6 65.8 29.5 0 )
10 cn «360 .094 6 81.6 73.1 25 .896
11 A «313 047 6 3,004.5 2,460.0 «27 .819
12 B 0313 .04? 6 1.852.1 119?0.0 .% 1-06‘“’
13 c 313 047 6 3,572.8 3,674.0 <34 1.028
14 D «313 047 6 12,315.0 4,319.9 +12 351
15 A «595 047 6 42.8 27.9 17 .652
16 B «595 « 047 6 31.0 19.5 .06 «629
L¥ C 0595 047 6 53.0 33.2 .18 626
18 ct .266 .094 6 2,092.2 1,282,0 22 .613
19 c" . 266 +094 6 244.6 192.3 21 .786
20 E «350 .100 6 2,099.0 694.3 S b 331
21 E 450 .100 5 452.6 197.5 .22 436
22 E « 550 .100 4 118.1 50.8 .18 430
23 F « 350 .100 6 4,413.8 1,467.4 «20 332
24 F 450 .100 5 748.5 220.2 «20 «294
25 F «550 .100 4 166.6 52.3 14 <314
26 G «350 100 6 7,686.4 9,493.0 .28 1.235
27 G 450 .100 5 1,063.6 336.1 o2l «316
28 G « 550 100 L 213.0 92.0 .22 432

WADD TR 60 - 752 13



TABLE 5 PARAMETERS AND TEST RESULTS FOR SAE 4340 STEEL SPECIMENS

v 3, v = 3.33, Se = 46
Test Spec~- LlLowest  Stress No. of Linear Test Endur-  Cumulative
Series +trum  Stress Ratio Stress Life Results ance Cycle
No. Type Ampli- Incre- Levels (Miner) Vp Fatigue Limit Ratio 1/
(Table tude ments As in in Life Vé Ratio s!
II) Ratio s Spec-  Thousands in e
trum n of Thousands
Cycles of
Cyecles
1 Al « 514 0714 6 195.6 72,6 343 <371
2 B! <514 .0714 6 91l.4 28.3  .092 .310
3 ol <514 L0714 6 380,0 64.0  .156 168
L D « 514 0714 6 954.0 133.9 .276 140
5 C 3 0714 6 1,363.0 279.0 .214 «205
6 D 443 0714 6 4,178.0 796.0  .380 .191
7 E «350 .1000 6 9,330.0 1,550.0 ,.288 «166
8 E 450 .1000 5 2,054.0 267.0 «263 130
9 E «550 .1000 4 3204 168.0 «379 o 524
10 F «350 .1000 6 43,220.0 3,480.,0 .292 .071
11 F 450 . 1000 5 4,945,0 497.0 .315 .101
12 F « 550 .1000 L 494, 5 235.0 .389 475
13 G .350 . 1000 6 709,220.0 70,000.0* .400 «100
14 G 450 . 1000 5 22,334.0 2,180.0 .336 .098
15 G « 550 « 1000 4 705.7 330.0 L4404 468

* Estimated Value

WADD TR 60 - 752 14
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